On H-cofinitely supplemented modules
Authors
Abstract:
A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}$-cofinitely supplemented module and let $N leq M$ be a submodule. Suppose that for every direct summand $K$ of $M$, $(N + K)/N$ lies above a direct summand of $M/N$. Then $M/N$ is $emph{H}$-cofinitely supplemented. Let $M$ be an $emph{H}$-cofinitely supplemented module. Let $N$ be a direct summand of $M$. Suppose that for every direct summand $K$ of $M$ with $M=N+K$, $Ncap K$ is also a direct summand of $M$. Then $N$ is $emph{H}$-cofinitely supplemented. Let $M = M_{1} oplus M_{2}$. If $M_{1}$ is radical $M_{2}$-projective (or $M_{2}$ is radical $M_{1}$-projective) and $M_{1}$ and $M_{2}$ are $emph{H}$-cofinitely supplemented, then $M$ is $emph{H}$-cofinitely supplemented
similar resources
on h-cofinitely supplemented modules
a module $m$ is called $emph{h}$-cofinitely supplemented if for every cofinite submodule $e$ (i.e. $m/e$ is finitely generated) of $m$ there exists a direct summand $d$ of $m$ such that $m = e + x$ holds if and only if $m = d + x$, for every submodule $x$ of $m$. in this paper we study factors, direct summands and direct sums of $emph{h}$-cofinitely supplemented modules. let $m$ be an $emph{h}$...
full textOn Rad-H-supplemented Modules
Let M be a right R-module. We call M Rad-H-supplemented iffor each Y M there exists a direct summand D of M such that(Y + D)/D (Rad(M) + D)/D and (Y + D)/Y (Rad(M) + Y )/Y .It is shown that:(1) Let M = M1M2, where M1 is a fully invariant submodule of M.If M is Rad-H-supplemented, thenM1 andM2 are Rad-H-supplemented.(2) Let M = M1 M2 be a duo module and Rad--supplemented. IfM1 is radical M2-...
full textA generalization of $oplus$-cofinitely supplemented modules
We say that a module $M$ is a emph{cms-module} if, for every cofinite submodule $N$ of $M$, there exist submodules $K$ and $K^{'}$ of $M$ such that $K$ is a supplement of $N$, and $K$, $K^{'}$ are mutual supplements in $M$. In this article, the various properties of cms-modules are given as a generalization of $oplus$-cofinitely supplemented modules. In particular, we prove tha...
full textA Note on Cofinitely δ-Lifting (Supplemented) Modules
It is proven that a ring R is δ-semiperfect if and only if every right R-module is (amply) cofinitely δ-supplemented. Mathematics Subject Classification: 16L30, 16E50
full texta generalization of $oplus$-cofinitely supplemented modules
we say that a module $m$ is a emph{cms-module} if, for every cofinite submodule $n$ of $m$, there exist submodules $k$ and $k^{'}$ of $m$ such that $k$ is a supplement of $n$, and $k$, $k^{'}$ are mutual supplements in $m$. in this article, the various properties of cms-modules are given as a generalization of $oplus$-cofinitely supplemented modules. in particular, we prove tha...
full textRad - ⊕ - Supplemented Modules
In this paper we provide various properties of Rad-⊕-supplemented modules. In particular, we prove that a projective module M is Rad⊕-supplemented if and only if M is ⊕-supplemented, and then we show that a commutative ring R is an artinian serial ring if and only if every left R-module is Rad-⊕-supplemented. Moreover, every left R-module has the property (P ∗) if and only if R is an artinian s...
full textMy Resources
Journal title
volume 39 issue 2
pages 325- 346
publication date 2013-05-15
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023